Supplement to Common Knowledge
Proof of Proposition 2.5
Proposition 2.5.
\(\omega \in \mathbf{K}^m_N(A)\)
iff
- (1)
- For all agents \(i_1, i_2 , \ldots ,i_m \in N, \omega \in \mathbf{K}_{i_1}\mathbf{K}_{i_2} \ldots \mathbf{K}_{i_m}(A)\)
Hence, \(\omega \in \mathbf{K}^*_N (A)\) iff (1) is the case for each \(m \ge 1\).
Proof.
Note first that
By (2),
\[ \mathbf{K}^m_N(A) \subseteq \mathbf{K}_{i_1}\mathbf{K}_{i_2} \cdots \mathbf{K}_{i_m}(A) \]for \(i_1, i_2 , \ldots ,i_m \in N\), so if \(\omega \in \mathbf{K}^m_N(A)\) then condition (1) is satisfied. Condition (1) is equivalent to
\[ \omega \in \bigcap_{i_1\in N} \mathbf{K}_{i_1} \big( \bigcap_{i_2\in N} \mathbf{K}_{i_2} \big( \cdots \big( \bigcap_{i_{m-1}\in N} \mathbf{K}_{i_{m-1}} \big( \bigcap_{i_m\in N} \mathbf{K}_{i_m}(A) \big) \big) \big) \big) \]so by (2), if (1) is satisfied then \(\omega \in \mathbf{K}^m_N(A).\) \(\Box\)