Supplement to Common Knowledge
Proof of Lemma 2.16
Lemma 2.16.
\(\mathcal{M}(\omega)\)
is common
knowledge for the agents of \(N\) at \(\omega\).
Proof.
Since
\(\mathcal{M}\)
is a coarsening of
\(\mathcal{H}_i\) for
each \(i \in N,\)
\(\mathbf{K}_i (\mathcal{M}(\omega))\).
Hence,
\(\mathbf{K}^1_N (\mathcal{M}(\omega)),\) and since by definition
\(\mathbf{K}_i (\mathcal{M}(\omega)) = \{ \omega \mid \mathcal{H}_i (\omega)
\subseteq \mathcal{M}(\omega)\} = \mathcal{M}(\omega)\),
Applying the recursive definition of mutual knowledge, for any \(m \ge 1\),
\[\begin{align} \mathbf{K}^m_N(\mathcal{M}(\omega)) &= \bigcap_{i \in N}\mathbf{K}_i (\mathbf{K}^{m-1}_{N}(\mathcal{M}(\omega)) \\ &= \bigcap_{i \in N}\mathbf{K}_i (\mathcal{M}(\omega)) \\ &= \mathcal{M}(\omega) \end{align}\]so, since \(\omega \in \mathcal{M}(\omega)\), by definition we have \(\omega \in \mathbf{K}^*_N (\mathcal{M}(\omega)).\) \(\Box\)