Bibliography Sorted by Topic
A. General monographs on fuzzy logics
- Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
2011a, Handbook of Mathematical Fuzzy Logic, Volume 1,
(Mathematical Logic and Foundations, Volume 37), London: College
Publications.
- ––– (eds.), 2011b, Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications.
- Cintula, Petr, Christian G. Fermüller, and Carles Noguera
(eds.), 2015, Handbook of Mathematical Fuzzy Logic, Volume 3,
(Mathematical Logic and Foundations, Volume 58), London: College
Publications.
- Gottwald, Siegfried, 2001, A Treatise On Many-Valued
Logics, (Studies in Logic and Computation, Volume 9), Baldock:
Research Studies Press Ltd.
- Hájek, Petr, 1998, Metamathematics of Fuzzy Logic,
(Trends in Logic, Volume 4), Dordrecht: Kluwer.
B. Fuzzy logics and fuzzy set theory
- Bělohlávek, Radim, Joseph W. Dauben, and George J.
Klir, 2017, Fuzzy Logic and Mathematics: A Historical
Perspective, Oxford University Press.
doi:10.1093/oso/9780190200015.001.0001
- Goguen, Joseph A., 1969, “The Logic of Inexact
Concepts”, Synthese, 19(3–4): 325–373.
- Nguyen, Hung T. and Elbert A. Walker, 2005, A First Course in
Fuzzy Logic (third edition), Chapman and Hall/CRC.
- Ross, Timothy J., 2016, Fuzzy Logic with Engineering
Applications (fourth edition), Hoboken, NJ: Wiley.
- Zadeh, Lotfi A., 1965, “Fuzzy Sets”, Information
and Control, 8(3): 338–353.
doi:10.1016/S0019-9958(65)90241-X
- –––, 1975, “Fuzzy logic and approximate
reasoning”, Synthese, 30: 407 – 428. doi:
10.1007/BF00485052
C. Algebraic and real-valued semantics for fuzzy logics
- Aguzzoli, Stefano, Simone Bova, and Brunella Gerla, 2011,
“Free algebras and functional representation for fuzzy
logics”, in Cintula, Petr, Petr Hájek, and Carles Noguera
(eds.), Handbook of Mathematical Fuzzy Logic, Volume 2,
(Mathematical Logic and Foundations, Volume 38), London: College
Publications, pages 713–791.
- Cintula, Petr, Francesc Esteva, Joan Gispert, Lluís Godo,
Franco Montagna, and Carles Noguera, 2009, “Distinguished
Algebraic Semantics for T-norm Based Fuzzy Logics: Methods and
Algebraic Equivalencies”, Annals of Pure and Applied
Logic, 160(1): 53–81. doi:10.1016/j.apal.2009.01.012
- Gehrke, Mai, Carol L. Walker, and Elbert A. Walker, 1997, “A
Mathematical Setting for Fuzzy Logics”, International
Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems,
5(3): 223–238. doi:10.1142/S021848859700021X
- Horčík, Rostislav, 2011, “Algebraic Semantics:
Semilinear FL-Algebras”, in Cintula, Petr, Petr Hájek,
and Carles Noguera (eds.), Handbook of Mathematical Fuzzy
Logic, Volume 1, (Mathematical Logic and Foundations, Volume 37),
London: College Publications, pages 283–353.
- Jenei, Sándor and Franco Montagna, 2002, “A Proof of
Standard Completeness for Esteva and Godo’s Logic MTL”,
Studia Logica, 70(2): 183–192.
doi:10.1023/A:1015122331293
- –––, 2003, “A Proof of Standard
Completeness for Non-Commutative Monoidal T-norm Logic”,
Neural Network World, 13(5): 481–489.
- Klement, Erich Peter, Radko Mesiar, and Endre Pap, 2000,
Triangular Norms, (Trends in Logic, Volume 8), Dordrecht:
Kluwer.
- Ling, Cho-Hsin, 1965, “Representation of Associative
Functions”, Publicationes Mathematicae Debrecen, 12:
189–212.
- Mostert, Paul S. and Allen L. Shields, 1957, “On the
Structure of Semigroups on a Compact Manifold with Boundary”,
The Annals of Mathematics, Second Series, 65(1):
117–143. doi:10.2307/1969668
- Vetterlein, Thomas, 2015, “Algebraic Semantics: The
Structure of Residuated Chains”, in Cintula, Petr, Christian G.
Fermüller, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 3, (Mathematical Logic and
Foundations, Volume 58), London: College Publications, pages
929–967.
D. Game-theoretic semantics for fuzzy logics
- Cicalese, Ferdinando and Franco Montagna, 2015,
“Ulam–Rényi Game Based Semantics For Fuzzy
Logics”, in Cintula, Petr, Christian G. Fermüller, and
Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1029–1062.
- Fermüller, Christian G., 2015, “Semantic Games for
Fuzzy Logics”, in Cintula, Petr, Christian G. Fermüller,
and Carles Noguera (eds.), Handbook of Mathematical Fuzzy
Logic, Volume 3, (Mathematical Logic and Foundations, Volume 58),
London: College Publications, pages 969–1028.
- Fermüller, Christian G. and Christoph Roschger, 2014,
“Randomized Game Semantics for Semi-Fuzzy Quantifiers”,
Logic Journal of the Interest Group of Pure and Applied
Logic, 22(3): 413–439. doi:10.1093/jigpal/jzt049
- Giles, Robin, 1974, “A Non-Classical Logic for
Physics”, Studia Logica, 33(4): 397–415.
doi:10.1007/BF02123379
- Mundici, Daniele, 1992, “The Logic of Ulam’s Game with
Lies”, in Bicchieri, Cristina and Maria Luisa Dalla Chiara
(eds.), Knowledge, Belief, and Strategic Interaction
(Castiglioncello, 1989), Cambridge: Cambridge
University Press, 275–284.
E. Other semantics for fuzzy logics
- Běhounek, Libor, 2009, “Fuzzy Logics Interpreted as
Logics of Resources”, in Peliš, Michal (ed.), The
Logica Yearbook 2008, London: College Publications, pages
9–21.
- Hisdal, Ellen, 1988, “Are Grades of Membership
Probabilities?” Fuzzy Sets and Systems, 25(3):
325–348. doi:10.1016/0165-0114(88)90018-8
- Lawry, Jonathan, 1998, “A Voting Mechanism for Fuzzy
Logic”, International Journal of Approximate Reasoning,
19(3–4): 315–333. doi:10.1016/S0888-613X(98)10013-0
- Montagna, Franco and Hiroakira Ono, “Kripke Semantics,
Undecidability and Standard Completeness for Esteva and Godo’s
Logic MTL\(\forall\)”, Studia Logica, 71(2):
227–245.
- Paris, Jeff, 1997, “A Semantics for Fuzzy Logic”,
Soft Computing, 1(3): 143–147.
doi:10.1007/s005000050015
- –––, 2000, “Semantics for Fuzzy Logic
Supporting Truth Functionality”, in Novák, Vilém
and Irina Perfilieva (eds.), Discovering the World with Fuzzy
Logic, (Studies in Fuzziness and Soft Computing, Volume 57),
Heidelberg: Springer, pages 82–104.
- Ruspini, Enrique H., 1991, “On the Semantics of Fuzzy
Logic”, International Journal of Approximate Reasoning,
5(1): 45–88. doi:10.1016/0888-613X(91)90006-8
F. Łukasiewicz logic
- Cignoli, Roberto, Itala M. D’Ottaviano, and Daniele Mundici,
1999, Algebraic Foundations of Many-Valued Reasoning, (Trends
in Logic, Volume 7), Dordrecht: Kluwer.
- Hay, Louise Schmir, 1963, “Axiomatization of the
Infinite-Valued Predicate Calculus”, Journal of Symbolic
Logic, 28(1): 77–86. doi:10.2307/2271339
- Leştean, Ioana and Antonio Di Nola, 2011,
“Łukasiewicz Logic and MV-Algebras”, in Cintula,
Petr, Petr Hájek, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
469–583.
- Łukasiewicz, Jan, 1920, “O Logice
Trójwartościowej”, Ruch Filozoficzny, 5:
170–171. English translation, “On Three-Valued
Logic”, in McCall, Storrs (ed.), 1967, Polish Logic
1920–1939, Oxford: Clarendon Press, pages 16–18,
and in Jan Łukasiewicz, 1970, Selected Works, Ludwik
Borkowski (ed.), Amsterdam: North-Holland, pages 87–88.
- Łukasiewicz, Jan and Alfred Tarski, 1930,
“Untersuchungen über den Aussagenkalkül”,
Comptes Rendus Des Séances de La Société Des
Sciences et Des Lettres de Varsovie, Cl. III, 23(iii):
30–50.
- McNaughton, Robert, 1951, “A Theorem About Infinite-Valued
Sentential Logic”, Journal of Symbolic Logic, 16(1):
1–13. doi:10.2307/2268660
- Mundici, Daniele, 2011, Advanced Łukasiewicz Calculus and
MV-Algebras, (Trends in Logic, Volume 35), New York:
Springer.
G. Gödel logics
- Baaz, Matthias, 1996, “Infinite-Valued Gödel Logic with
0–1-Projections and Relativisations”, in Hájek,
Petr (ed.), Gödel’96: Logical Foundations of
Mathematics, Computer Science, and Physics (Lecture Notes in
Logic, Volume 6), Brno: Springer, pages 23–33.
- Baaz, Matthias and Norbert Preining, 2011,
“Gödel–Dummett Logics”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications, pages 585–625.
- Dummett, Michael, 1959, “A Propositional Calculus with
Denumerable Matrix”, Journal of Symbolic Logic, 24(2):
97–106. doi:10.2307/2964753
- Gödel, Kurt, 1932, “Zum intuitionistischen
Aussagenkalkül”, Anzeiger Akademie Der Wissenschaften
Wien, 69: 65–66.
- Horn, Alfred, 1969, “Logic with Truth Values in a Linearly
Ordered Heyting Algebra”, Journal of Symbolic Logic,
34(3): 395–408.
H. Other fuzzy logics
- Busaniche, Manuela and Franco Montagna, 2011,
“Hájek’s Logic BL and BL-Algebras”, in
Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
Handbook of Mathematical Fuzzy Logic, Volume 1, (Mathematical
Logic and Foundations, Volume 37), London: College Publications, pages
355–447.
- Esteva, Francesc, Joan Gispert, Lluís Godo, and Carles
Noguera, 2007, “Adding Truth-Constants to Logics of Continuous
T-norms: Axiomatization and Completeness Results”, Fuzzy
Sets and Systems, 158(6): 597–618.
doi:10.1016/j.fss.2006.11.010
- Esteva, Francesc and Lluís Godo, 2001, “Monoidal
T-norm Based Logic: Towards a Logic for Left-Continuous
T-norms”, Fuzzy Sets and Systems, 124(3):
271–288. doi:10.1016/S0165-0114(01)00098-7
- Esteva, Francesc, Lluís Godo, Petr Hájek, and Mirko
Navara, 2000, “Residuated Fuzzy Logics with an Involutive
Negation”, Archive for Mathematical Logic, 39(2):
103–124. doi:10.1007/s001530050006
- Esteva, Francesc, Lluís Godo, and Enrico Marchioni, 2011,
“Fuzzy Logics with Enriched Language”, in Cintula, Petr,
Petr Hájek, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
627–711.
- Esteva, Francesc, Lluís Godo, and Franco Montagna, 2001,
“The \(L\Pi\) and \(L\Pi\frac12\) Logics: Two Complete Fuzzy
Systems Joining Łukasiewicz and Product Logics”,
Archive for Mathematical Logic, 40(1): 39–67.
doi:10.1007/s001530050173
- –––, 2003, “Axiomatization of Any
Residuated Fuzzy Logic Defined by a Continuous T-norm”, in
Bilgiç, Taner, Bernard De Baets, and Okyay Kaynak (eds.),
Fuzzy Sets and Systems: IFSA 2003,(Lecture Notes in Computer
Science, Volume 2715), Berlin/Heidelberg: Springer, pages
172–179. doi:10.1007/3-540-44967-1_20
- Hájek, Petr, 2001, “On Very True”, Fuzzy
Sets and Systems, 124(3): 329–333.
- Haniková, Zuzana, 2014, “Varieties Generated by
Standard BL-Algebras”, Order, 31(1): 15–33.
doi:10.1007/s11083-013-9285-5
- Montagna, Franco, Carles Noguera, and Rostislav
Horčík, 2006, “On Weakly Cancellative Fuzzy
Logics”, Journal of Logic and Computation, 16(4):
423–450.
I. Fuzzy logics as substructural logics
- Cintula, Petr, Rostislav Horčík, and Carles Noguera,
2013, “Non-Associative Substructural Logics and their Semilinear
Extensions: Axiomatization and Completeness Properties”, The
Review of Symbolic Logic, 6(3): 394–423.
doi:10.1017/S1755020313000099
- –––, 2014, “The Quest for the Basic Fuzzy
Logic”, in Franco Montagna (ed.), Petr Hájek on
Mathematical Fuzzy Logic,(Outstanding Contributions to Logic,
Volume 6), Cham: Springer, pages 245–290.
doi:10.1007/978-3-319-06233-4_12
- Esteva, Francesc, Lluís Godo, and Àngel
García-Cerdaña, 2003, “On the Hierarchy of T-norm
Based Residuated Fuzzy Logics”, in Fitting, Melvin and Ewa
Orłowska (eds.), Beyond Two: Theory and Applications of
Multiple-Valued Logic, (Studies in Fuzziness and Soft Computing,
Volume 114), Heidelberg: Springer, pages 251–272.
- Galatos, Nikolaos, Peter Jipsen, Tomasz Kowalski, and Hirakori Ono
(eds.), 2007, Residuated Lattices: An Algebraic Glimpse at
Substructural Logics, (Studies in Logic and the Foundations of
Mathematics, Volume 151), Amsterdam: Elsevier.
- Metcalfe, George and Franco Montagna, 2007, “Substructural
Fuzzy Logics”, Journal of Symbolic Logic, 72(3):
834–864. doi:10.2178/jsl/1191333844
J. Fuzzy logics in abstract algebraic logic
- Běhounek, Libor and Petr Cintula, 2006, “Fuzzy Logics
as the Logics of Chains”, Fuzzy Sets and Systems,
157(5): 604–610.
- Cintula, Petr, 2006, “Weakly Implicative (Fuzzy) Logics I:
Basic Properties”, Archive for Mathematical Logic,
45(6): 673–704.
- Cintula, Petr and Carles Noguera, 2011, “A General Framework
for Mathematical Fuzzy Logic”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 1, (Mathematical Logic and Foundations,
Volume 37), London: College Publications, pages 103–207.
- Font, Josep Maria, 2016, Abstract Algebraic Logic: An
Introductory Textbook, (Mathematical Logic and Foundations,
Volume 60), London: College Publications.
K. First- and higher-fuzzy logics
- Badia, Guillermo and Carles Noguera, 2021, “Lindström
theorems in graded model theory”, Annals of Pure and Applied
Logic, 172(3): 102916. doi: 10.1016/j.apal.2020.102916
- –––, 2021, “A General Omitting Types
Theorem in Mathematical Fuzzy Logic”, IEEE Transactions on
Fuzzy Systems, 29(6): 1386–1394. doi:
10.1109/TFUZZ.2020.2975146
- Běhounek, Libor and Petr Cintula, 2005, “Fuzzy Class
Theory”, Fuzzy Sets and Systems,
154(1):34–55.
- Běhounek, Libor and Zuzana Haniková, 2014, “Set
Theory and Arithmetic in Fuzzy Logic”, in Montagna, Franco
(ed.), Petr Hájek on Mathematical Fuzzy Logic,
(Outstanding Contributions to Logic, Volume 6), Cham: Springer, pages
63–89.
- Cintula, Petr, Denisa Diaconescu, and George Metcalfe, 2019,
“Skolemization and Herbrand theorems for lattice-valued
logics”, Theoretical Computer Science, 768:
54–75. doi: 10.1016/j.tcs.2019.02.007
- Dellunde, Pilar, 2012, “Preserving Mappings in Fuzzy
Predicate Logics”, Journal of Logic and Computation,
22(6): 1367–1389.
- Dellunde, Pilar, Àngel García-Cerdaña, and
Carles Noguera, 2018, “Back-and-forth systems for fuzzy
first-order models”, Fuzzy Sets and Systems, 345:
83–98 (2018)
- Di Nola, Antonio and Giangiacomo Gerla, 1986, “Fuzzy Models
of First-Order Languages”, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik,
32(19–24): 331–340.
- Hájek, Petr and Petr Cintula, 2006, “On Theories and
Models in Fuzzy Predicate Logics”, Journal of Symbolic
Logic, 71(3): 863–880.
- Hájek, Petr and Zuzana Haniková, 2003, “A
Development of Set Theory in Fuzzy Logic”, in Fitting, Melvin
and Ewa Orłowska (eds.), Beyond Two: Theory and Applications
of Multiple-Valued Logic, (Studies in Fuzziness and Soft
Computing, Volume 114), Heidelberg: Springer, pages
273–285.
- Hájek, Petr, Jeff Paris, and John Shepherdson, 2000,
“The Liar Paradox and Fuzzy Logic”, Journal of
Symbolic Logic, 65(1): 339–346.
- Novák, Vilém, 2004, “On Fuzzy Type
Theory”, Fuzzy Sets and Systems, 149(2):
235–273.
- Takeuti, Gaisi and Satoko Titani, 1984, “Intuitionistic
Fuzzy Logic and Intuitionistic Fuzzy Set Theory”, Journal of
Symbolic Logic, 49(3): 851–866.
- –––, 1992, “Fuzzy Logic and Fuzzy Set
Theory”, Archive for Mathematical Logic, 32(1):
1–32.
L. Complexity of fuzzy logics
- Baaz, Matthias, Petr Hájek, Franco Montagna, and Helmut
Veith, 2002, “Complexity of T-Tautologies”, Annals of
Pure and Applied Logic, 113(1–3): 3–11.
- Hájek, Petr, Franco Montagna, and Carles Noguera, 2011,
“Arithmetical Complexity of First-Order Fuzzy Logics”, in
Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
Handbook of Mathematical Fuzzy Logic, Volume 2, (Mathematical
Logic and Foundations, Volume 38), London: College Publications, pages
853–908.
- Haniková, Zuzana, 2011, “Computational Complexity of
Propositional Fuzzy Logics”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications, pages 793–851.
- Montagna, Franco, 2001, “Three Complexity Problems in
Quantified Fuzzy Logic”, Studia Logica, 68(1):
143–152. doi:10.1023/A:1011958407631
- Montagna, Franco and Carles Noguera, 2010, “Arithmetical
Complexity of First-Order Predicate Fuzzy Logics Over Distinguished
Semantics”, Journal of Logic and Computation, 20(2):
399–424. doi:10.1093/logcom/exp052
- Mundici, Daniele, 1987, “Satisfiability in Many-Valued
Sentential Logic is NP-Complete”, Theoretical Computer
Science, 52(1–2): 145–153.
- Ragaz, Matthias Emil, 1981, Arithmetische Klassifikation von
Formelmengen der unendlichwertigen Logik (PhD thesis). Swiss
Federal Institute of Technology, Zürich.
doi:10.3929/ethz-a-000226207
- Scarpellini, Bruno, 1962, “Die Nichtaxiomatisierbarkeit des
unendlichwertigen Prädikatenkalküls von
Łukasiewicz”, Journal of Symbolic Logic, 27(2):
159–170. doi:10.2307/2964111
M. Proof theory for fuzzy logics
- Avron, Arnon, 1991, “Hypersequents, Logical Consequence and
Intermediate Logics for Concurrency”, Annals of Mathematics
and Artificial Intelligence, 4(3–4): 225–248.
doi:10.1007/BF01531058
- Ciabattoni, Agata, Nikolaos Galatos, and Kazushige Terui, 2012,
“Algebraic Proof Theory for Substructural Logics:
Cut-Elimination and Completions”, Annals of Pure and Applied
Logic, 163(3): 266–290.
- Fermüller, Christian G. and George Metcalfe, 2009,
“Giles’s Game and Proof Theory for Łukasiewicz
Logic”, Studia Logica, 92(1): 27–61.
doi:10.1007/s11225-009-9185-2
- Metcalfe, George, 2011, “Proof Theory for Mathematical Fuzzy
Logic”, in Cintula, Petr, Petr Hájek, and Carles Noguera
(eds.), Handbook of Mathematical Fuzzy Logic, Volume 1,
(Mathematical Logic and Foundations, Volume 37), London: College
Publications, pages 209–282.
- Metcalfe, George, Nicola Olivetti, and Dov M. Gabbay, 2008,
Proof Theory for Fuzzy Logics,(Applied Logic Series, Volume
36), Dordrecht: Springer Netherlands.
N. Structural completeness and unification in fuzzy logics
- Cintula, Petr and George Metcalfe, 2009, “Structural
Completeness in Fuzzy Logics”, Notre Dame Journal of Formal
Logic, 50(2): 153–183.
- Jeřábek, Emil, 2010, “Bases of Admissible Rules
of Łukasiewicz Logic”, Journal of Logic and
Computation, 20(6): 1149–1163.
- Marra, Vincenzo and Luca Spada, 2013, “Duality,
Projectivity, and Unification in Łukasiewicz Logic and
MV-Algebras”, Annals of Pure and Applied Logic, 164(3):
192–210.
O. Modal fuzzy logics
- Bou, Félix, Francesc Esteva, Lluís Godo, and Ricardo
Oscar Rodríguez, 2011, “On the Minimum Many-Valued Modal
Logic Over a Finite Residuated Lattice”, Journal of Logic
and Computation, 21(5): 739–790.
- Caicedo, Xavier, George Metcalfe, Ricardo Oscar Rodríguez,
and Jonas Rogger, 2017, “Decidability of order-based modal
logics”, Journal of Computer and System Sciences, 88:
53–74. doi:10.1016/j.jcss.2017.03.012
- Caicedo, Xavier and Ricardo Oscar Rodríguez, 2010,
“Standard Gödel Modal Logics”, Studia
Logica, 94(2): 189–214.
- –––, 2015, “Bi-modal Gödel logic over
[0, 1]-valued Kripke frames”, Journal of Logic and
Computation, 25(1): 37–55. doi: 10.1093/logcom/exs036
- Cintula, Petr, Paula Menchón, and Carles Noguera, 2019,
“Toward a general frame semantics for modal many-valued
logics”, Soft Computing , 23(7): 2233–2241. doi:
10.1007/s00500-018-3369-5
- Hansoul, Georges and Bruno Teheux, 2013, “Extending
Łukasiewicz Logics with a Modality: Algebraic Approach to
Relational Semantics”, Studia Logica, 101(3):
505–545, doi: 10.1007/s11225-012-9396-9.
- Rodríguez, Ricardo Oscar and Amanda Vidal, 2021,
“Axiomatization of Crisp Gödel Modal Logic”,
Studia Logica, 109(2): 367–395. doi:
10.1007/s11225-020-09910-5
- Teheux, Bruno, 2016, “Modal definability based on
Łukasiewicz validity relations”, Studia Logica,
104(2): 343–363. doi: 10.1007/s11225-015-9643-y
- Vidal, Amanda, 2021, “On transitive modal many-valued
logics”, Fuzzy Sets and Systems, 407: 97–114.
doi: 10.1016/j.fss.2020.01.011
- Vidal, Amanda, Francesc Esteva, and Lluís Godo, 2017,
“On modal extensions of Product fuzzy logic”, Journal
of Logic and Computation, 27(1): 299–336. doi:
10.1093/logcom/exv046
P. Description fuzzy logics
- Bobillo, Fernando, Marco Cerami, Francesc Esteva, Àngel
García-Cerdaña, Rafael Peñaloza, and Umberto
Straccia, 2015, “Fuzzy Description Logics”, in Cintula,
Petr, Christian G. Fermüller, and Carles Noguera (eds.),
Handbook of Mathematical Fuzzy Logic, Volume 3, (Mathematical
Logic and Foundations, Volume 58), London: College Publications, pages
1105–1181.
- García-Cerdaña, Àngel, Eva Armengol, and
Francesc Esteva, 2010, “Fuzzy Description Logics and T-norm
Based Fuzzy Logics”, International Journal of Approximate
Reasoning, 51(6): 632–655.
- Hájek, Petr, 2005, “Making Fuzzy Description Logic
More General”, Fuzzy Sets and Systems, 154(1):
1–15.
- Straccia, Umberto, 1998, “A Fuzzy Description Logic”,
in Mostow, Jack and Chuck Rich (eds.), Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI 1998), Menlo
Park: AAAI Press, pages 594–599.
Q. Probability and fuzzy logics
- Baldi, Paolo, Petr Cintula, and Carles Noguera, 2020,
“Classical and Fuzzy Two-Layered Modal Logics for Uncertainty:
Translations and Proof Theory”. International Journal of
Computational Intelligence Systems, 13(1): 988–1001. doi:
10.2991/ijcis.d.200703.001
- Fedel, Martina, Hykel Hosni, and Franco Montagna, 2011, “A
Logical Characterization of Coherence for Imprecise
Probabilities”, International Journal of Approximate
Reasoning, 52(8): 1147–1170, doi:
10.1016/j.ijar.2011.06.004.
- Flaminio, Tommaso, 2021, “On standard completeness and
finite model property for a probabilistic logic on Łukasiewicz
events”, International Journal of Approximate
Reasoning, 131: 136–150. doi:
10.1016/j.ijar.2020.12.023
- Flaminio, Tommaso, Lluís Godo, and Enrico Marchioni, 2011,
“Reasoning About Uncertainty of Fuzzy Events: An
Overview”, in Cintula, Petr, Christian G. Fermüller,
Lluís Godo, and Petr Hájek (eds.), Understanding
Vagueness: Logical, Philosophical, and Linguistic Perspectives,
(Studies in Logic, Volume 36), London: College Publications, pages
367–400.
- Flaminio, Tommaso, Lluís Godo, and Sara Ugolini, 2018,
“Towards a probability theory for product logic: States,
integral representation and reasoning”, International
Journal of Approximate Reasoning, 93: 199–218. doi:
10.1016/j.ijar.2017.11.003
- Flaminio, Tommaso and Tomáš Kroupa, 2015,
“States of MV-Algebras”, in Cintula, Petr, Christian
Fermüller, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 3, (Mathematical Logic and
Foundations, Volume 58), London: College Publications, pages
1183–1236.
- Godo, Lluís, Francesc Esteva, and Petr Hájek, 2000,
“Reasoning About Probability Using Fuzzy Logic”,
Neural Network World, 10(5): 811–823.
R. Other approaches to fuzzy logic
- Bělohlávek, Radim and Vilém Vychodil, 2005,
Fuzzy Equational Logic, (Studies in Fuzziness and Soft
Computing, Volume 186), Berlin and Heidelberg: Springer.
- Gerla, Giangiacomo, 2001, Fuzzy Logic—Mathematical Tool
for Approximate Reasoning, (Trends in Logic, Volume 11), New
York: Kluwer and Plenum Press.
- Novák, Vilém, 2015, “Fuzzy Logic with
Evaluated Syntax”, in Cintula, Petr, Christian Fermüller,
and Carles Noguera (eds.), Handbook of Mathematical Fuzzy
Logic, Volume 3, (Mathematical Logic and Foundations, Volume 58),
London: College Publications, pages 1063–1104.
- Novák, Vilém, Irina Perfilieva, and Jiří
Močkoř, 2000, Mathematical Principles of Fuzzy
Logic, Dordrecht: Kluwer.
- Pavelka, Jan, 1979, “On Fuzzy Logic I, II, and III”,
Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 25: 45–52, 119–134, and
447–464.
S. Vagueness and fuzzy logics
- Běhounek, Libor, 2014, “In Which Sense Is Fuzzy Logic a
Logic For Vagueness?”, in Łukasiewicz, Thomas, Rafael
Peñaloza, and Anni-Yasmin Turhan (eds.), PRUV 2014: Logics
for Reasoning About Preferences, Uncertainty, and Vagueness,
(CEUR Workshop Proceedings, Volume 1205), Dresden: CEUR.
- Hájek, Petr and Vilém Novák, 2003, “The
Sorites Paradox and Fuzzy Logic”, International Journal of
General Systems, 32(4): 373–383.
doi:10.1080/0308107031000152522
- Smith, Nicholas J.J., 2005, “Vagueness as Closeness”,
Australasian Journal of Philosophy, 83(2): 157–183.
doi:10.1080/00048400500110826
- –––, 2008, Vagueness and Degrees of
Truth, Oxford: Oxford University Press.
- –––, 2015, “Fuzzy Logics in Theories of
Vagueness”, in Cintula, Petr, Christian Fermüller, and
Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1237–1281.