Supplement to Inductive Logic

Appendix 4

An Epistemic Advantage of Drawing on Well-Supported Auxiliary Hypotheses

Suppose that hypothesis \(h_i\) does very poorly as compared to \(h_j\) on evidence \((c \cdot e)\) relative to the best supported (conjunction of) auxiliaries \(a\) — i.e. \(P[h_i \mid (c \cdot e) \cdot (a \cdot d)] / P[h_j \mid (c \cdot e) \cdot (a \cdot d)]\) is quite small, due to the very small size of the likelihood ratio \(P[e \mid h_i \cdot c \cdot (a \cdot d)] / P[e \mid h_j \cdot c \cdot (a \cdot d)]\). And suppose that for an alternative (conjunction of) auxiliaries, \(a_r\), hypothesis \(h_i\) does much better on the same evidence — i.e. the likelihood ratio \(P[e \mid h_i \cdot c \cdot (a_r \cdot d)] / P[e \mid h_j \cdot c \cdot (a \cdot d)]\) is much larger than 1. (Here \(h_j\) continues to draw on the best supported auxiliary, \(a\).) This situation clearly calls for testing \((h_i \cdot a_r)\), the conjunction of \(h_i\) with its assisting auxiliary \(a_r\), against \((h_j \cdot a)\), the conjunction of \(h_j\) with the best supported auxiliary \(a\). Via Rule RB we have, \[ \frac{P[(h_i \cdot a_r) \mid c \cdot e \cdot d]}{P[(h_j \cdot a) \mid c \cdot e \cdot d]} = \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[(h_i \cdot a_r) \mid c \cdot d]}{P[(h_j \cdot a) \mid c \cdot d]}. \] This may apparently rehabilitate \(h_i\) by making the corresponding likelihood ratio, \(P[e \mid (h_i \cdot a_r) \cdot c \cdot d] / P[e \mid (h_j \cdot a) \cdot c \cdot d]\), quite large. So, has bringing \(a_r\) to bear succeeded in overcoming the challenge to \(h_i\), even though \(a_r\) is evidentially inferior to \(a\) on the body of evidence \((c^* \cdot e^*)\) directly relevant to these auxiliaries?

Perhaps not at all. For, when we test \((h_i \cdot a_r)\) against \((h_j \cdot a)\), it is important to include the total body of evidence, including the evidence \((c^* \cdot e^*)\) that bears on \(a_r\) versus \(a\). Via several applications of Rule RB together with three reasonable suppositions about probabilistic independence, we obtain the following two results, where

\[ \epsilon = \frac{P[a_r \mid c^* \cdot e^* \cdot d]}{P[a \mid c^* \cdot e^* \cdot d]} = \frac{P[e^* \mid a_r \cdot c^* \cdot d]}{P[e^* \mid a \cdot c^* \cdot d]} \times \frac{P[a_r \mid c^* \cdot d]}{P[a \mid c^* \cdot d]}\]

for some very small value of \(\epsilon\).

Alternative Auxiliary Formula 1

\[\begin{align} &\frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \\ &\qquad = \left(\frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} \right) \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_j \mid c \cdot (a \cdot d)]} \\ &\qquad = \frac{(P[e \mid (h_i \cdot a_r) \cdot c \cdot d] \times \epsilon)}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_j \mid c \cdot (a \cdot d)]}. \end{align}\]

Furthermore,

Alternative Auxiliary Formula 2

If \(P[e \mid (h_i \cdot a) \cdot c \cdot d] > 0\), then

\[\begin{align} &\frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \\ &\quad = \frac{P[h_i \mid (c \cdot e) \cdot (a \cdot d)]}{P[h_j \mid (c \cdot e) \cdot (a \cdot d)]} \times \left( \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_i \cdot a) \cdot c \cdot d]} \times \frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} \right)\\ & \qquad\qquad \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_i \mid c \cdot (a \cdot d)]} \\ &\quad = \frac{P[h_i \mid (c \cdot e) \cdot (a \cdot d)]}{P[h_j \mid (c \cdot e) \cdot (a \cdot d)]} \times \left( \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d] \times \epsilon}{P[e \mid (h_i \cdot a) \cdot c \cdot d]}\right) \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_i \mid c \cdot (a \cdot d)]}. \end{align}\]

To see what these formulae tell us, let’s begin with AAF2, which may be a bit easier to comprehend than AAF1. To apply AAF2, we consider cases where the \(a\) based likelihood for the evidence according to \(h_i\) is non-zero, \(P[e \mid (h_i \cdot a) \cdot c \cdot d] > 0.\)

Let us assume, as seems reasonable, that \(P[h_i \mid a_r \cdot c \cdot d]\) is more or less the same size as (or at least not much larger than) \(P[h_i \mid a \cdot c \cdot d]\). That is, let’s assume that auxiliary \(a_r\) doesn’t provide notably stronger evidence for \(h_i\) than does \(a\): \(P[h_i \mid a_r \cdot c \cdot d] \lessapprox P[h_i \mid a \cdot c \cdot d].\)

Now, suppose that auxiliary hypothesis \(a\) is very much more strongly supported by the body of evidence \((c^* \cdot e^*)\) than alternative hypothesis \(a_r\). So strongly that the comparative support value for \(P[a_r \mid (c^* \cdot e^*) \cdot d] / P[a \mid (c^* \cdot e^*) \cdot d] = \epsilon\) is small enough to neutralize whatever increase the auxiliary \(a_r\) might provide to the likelihood value \(P[e \mid (h_i \cdot a_r) \cdot c \cdot d]\) over the \(a\) based likelihood value \(P[e \mid (h_i \cdot a) \cdot c \cdot d]\). That is, suppose that the evidence \((c^* \cdot e^*)\) is strong enough to make \[\frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} = \; \epsilon \; \; \lessapprox \; \; \frac{P[e \mid (h_i \cdot a) \cdot c \cdot d]}{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}. \]

Then, according to the Alternative Auxiliary Formula 2 we must have, \[ \frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \; \; \lessapprox \; \; \frac{P[h_i \mid (c \cdot e) \cdot (a \cdot d)]}{P[h_j \mid (c \cdot e) \cdot (a \cdot d)]}. \]

Thus, when \(h_i\) is already doing poorly as compared to \(h_j\) on evidence \((c \cdot e)\) relative to the best supported (conjunction of) auxiliaries \(a\) — i.e. when \(P[h_i \mid (c \cdot e) \cdot (a \cdot d)] / P[h_j \mid (c \cdot e) \cdot (a \cdot d)]\) is quite small — allying \(h_i\) with an “evidentially more congenial”, but less well-supported, auxiliary \(a_r\) will not usually be much help. The alliance of \(h_i\) with such an auxiliary \(a_r\) can only significantly improve its comparative support when \(\epsilon,\) the strength of the evidence against \(a_r\), is weak enough to permit \(P[e \mid (h_i \cdot a_r) \cdot c \cdot d] \times \epsilon\) to be significantly greater than \(P[e \mid (h_i \cdot a) \cdot c \cdot d] > 0\).

When \(P[e \mid (h_i \cdot a) \cdot c \cdot d] = 0\), Rule RB guarantees that the \(a\) based posterior probability of \(h_i\) must be 0: \(P[h_i \mid (c \cdot e) \cdot (a \cdot d)] = 0.\) In that case, the \(a_r\) based likelihood, \(P[e \mid (h_i \cdot a_r) \cdot c \cdot d] > 0\), supplies significant help to \(h_i\) by providing it a posterior probability greater than 0. However, due to the evidence against \(a_r\) as compared to \(a\), this posterior probability may still remain significantly smaller than the \(a\) based posterior probability of \(h_j\). Alternative Auxiliary Formula 1 shows precisely how these considerations apply.

Suppose that auxiliary hypothesis \(a\) is very much more strongly supported by the body of evidence \((c^* \cdot e^*)\) than alternative hypothesis \(a_r\). So strongly that the comparative support value for \(P[a_r \mid (c^* \cdot e^*) \cdot d] / P[a \mid (c^* \cdot e^*) \cdot d] = \epsilon\) is small enough to overwhelm whatever advantage the auxiliary \(a_r\) might provide to increase the likelihood value \(P[e \mid (h_i \cdot a_r) \cdot c \cdot d]\) over the value \(P[e \mid (h_j \cdot a) \cdot c \cdot d]\). That is, suppose that the evidence \((c^* \cdot e^*)\) is strong enough to make

\[\frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} = \; \epsilon \; \; \ll \; \; \frac{P[e \mid (h_j \cdot a) \cdot c \cdot d]}{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}. \]

Then, according to the AAF1 we must have,

\[ \frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \; \; \ll \; \; \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_j \mid c \cdot (a \cdot d)]}. \]

Furthermore, if \(\epsilon\) is small enough that

\[\frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} = \; \epsilon \; \; \ll \; \; \frac{P[e \mid (h_j \cdot a) \cdot c \cdot d]}{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]} \times \frac{P[h_j \mid c \cdot (a \cdot d)]}{P[h_i \mid c \cdot (a_r \cdot d)]}. \]

Then AFF1 tells us that

\[ \frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \; \ll \; 1. \]

Thus, strong evidence against alternative auxiliary hypothesis \(a_r\) as compared to \(a\) can result in strong evidence against \((h_i \cdot a_r)\) as compared to \((h_j \cdot a)\).

Here are the only assumptions needed to prove the Alternative Auxiliary Formulae. Each of them is a reasonable probabilistic independence assumption, given the nature of the evidential context.

1. The likelihood of \(e\) is independent of \((c^* \cdot e^*)\), given what \((h_i \cdot a_r \cdot c \cdot d)\) probabilistically implies about \(e\). The same goes for \(h_j\) and \(a\) in place of \(h_i\) and \(a_r\), respectively.

\[\begin{align} P[e \mid (h_i \cdot a_r) \cdot c \cdot (c^* \cdot e^*) \cdot d] &= P[e \mid (h_i \cdot a_r) \cdot c \cdot d] \\ P[e \mid (h_j \cdot a) \cdot c \cdot (c^* \cdot e^*) \cdot d] &= P[e \mid (h_j \cdot a) \cdot c \cdot d] \end{align}\]

2. The likelihood of \(e^*\) is independent of both \(h_i\) and \(c\), given what \((a_r \cdot c^* \cdot d)\) probabilistically implies about \(e^*\). The same goes for \(h_j\) and \(a\) in place of \(h_i\) and \(a_r\), respectively.

\[\begin{align} P[e^* \mid (h_i \cdot a_r) \cdot c \cdot c^* \cdot d] &= P[e^* \mid a_r \cdot c^* \cdot d] \\ P[e^* \mid (h_j \cdot a) \cdot c \cdot c^* \cdot d] &= P[e^* \mid a \cdot c^* \cdot d] \end{align}\]

3. \(a_r\) is independent of \(c\), given \((c^* \cdot d)\). The same goes for \(a\), given \((c^* \cdot d)\).

\[\begin{align} P[a_r \mid c \cdot c^* \cdot d] &= P[a_r \mid c^* \cdot d] \\ P[a \mid c \cdot c^* \cdot d] &= P[a \mid c^* \cdot d] \end{align}\]

4. \(h_i\) is independent of \(c^*\), given \((a_r \cdot c \cdot d)\). The same goes for \(h_j\), given \((a \cdot c \cdot d)\).

\[\begin{align} P[h_i \mid a_r \cdot c \cdot c^* \cdot d] &= P[h_i \mid a_r \cdot c \cdot d] \\ P[h_j \mid a \cdot c \cdot c^* \cdot d] &= P[h_j \mid a \cdot c \cdot d] \end{align}\]
proof of the Alternative Auxiliaries Formula:
\[\begin{align} &\frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \\ &\quad = \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot (c^* \cdot e^*) \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot (c^* \cdot e^*) \cdot d]} \times \frac{P[(h_i \cdot a_r) \mid c \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid c \cdot (c^* \cdot e^*) \cdot d]} \\ &\quad = \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot (c^* \cdot e^*) \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot (c^* \cdot e^*) \cdot d]} \times \frac{P[e^* \mid (h_i \cdot a_r) \cdot c \cdot c^* \cdot d]}{P[e^* \mid (h_j \cdot a) \cdot c \cdot c^* \cdot d]} \\ &\qquad\quad \times \frac{P[(h_i \cdot a_r) \mid c \cdot c^* \cdot d]}{P[(h_j \cdot a) \mid c \cdot c^* \cdot d]} \\ &\quad = \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[e^* \mid a_r \cdot c^* \cdot d]}{P[e^* \mid a \cdot c^* \cdot d]} \times \frac{P[h_i \mid a_r \cdot c \cdot c^* \cdot d]}{P[h_j \mid a \cdot c \cdot c^* \cdot d]} \\ &\qquad\quad \times \frac{P[a_r \mid c \cdot c^* \cdot d]}{P[a \mid c \cdot c^* \cdot d]}\\ &\quad = \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[e^* \mid a_r \cdot c^* \cdot d]}{P[e^* \mid a \cdot c^* \cdot d]} \times \frac{P[h_i \mid a_r \cdot c \cdot d]}{P[h_j \mid a \cdot c \cdot d]} \\ &\qquad\quad \times \frac{P[a_r \mid c^* \cdot d]}{P[a \mid c^* \cdot d]}\\ &\quad = \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_j \mid c \cdot (a \cdot d)]}\\ \end{align}\]
The derivation up to this point yields AAF1. Continuing from there, and assuming hereafter that \(P[e \mid (h_i \cdot a) \cdot c \cdot d] > 0\), we derive AAF2 as follows.
\[\begin{align} &\frac{P[(h_i \cdot a_r) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]}{P[(h_j \cdot a) \mid (c \cdot e) \cdot (c^* \cdot e^*) \cdot d]} \\ &\quad = \left( \frac{P[e \mid (h_i \cdot a) \cdot c \cdot d]}{P[e \mid (h_j \cdot a) \cdot c \cdot d]} \times \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_i \cdot a) \cdot c \cdot d]} \right) \times \frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} \\ &\qquad\quad \times \left( \frac{P[h_i \mid c \cdot (a \cdot d)]}{P[h_j \mid c \cdot (a \cdot d)]} \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_i \mid c \cdot (a \cdot d)]} \right) \\ &\quad = \left( \frac{P[e \mid h_i \cdot c \cdot (a \cdot d)]}{P[e \mid h_j \cdot c \cdot (a \cdot d)]} \times \frac{P[h_i \mid c \cdot (a \cdot d)]}{P[h_j \mid c \cdot (a \cdot d)]} \right) \\ &\qquad\quad \times \left( \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_i \cdot a) \cdot c \cdot d]} \times \frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} \right) \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_i \mid c \cdot (a \cdot d)]}\\ &\quad = \frac{P[h_i \mid (c \cdot e) \cdot (a \cdot d)]}{P[h_j \mid (c \cdot e) \cdot (a \cdot d)]} \times \left( \frac{P[e \mid (h_i \cdot a_r) \cdot c \cdot d]}{P[e \mid (h_i \cdot a) \cdot c \cdot d]} \times \frac{P[a_r \mid (c^* \cdot e^*) \cdot d]}{P[a \mid (c^* \cdot e^*) \cdot d]} \right) \\ &\qquad\quad \times \frac{P[h_i \mid c \cdot (a_r \cdot d)]}{P[h_i \mid c \cdot (a \cdot d)]}. \end{align}\]

Copyright © 2025 by
James Hawthorne <hawthorne@ou.edu>

Open access to the SEP is made possible by a world-wide funding initiative.
The Encyclopedia Now Needs Your Support
Please Read How You Can Help Keep the Encyclopedia Free